Employing phase modulation and second harmonic nulling to eliminate the interference fringes from the spectrum of a portable coherent frequency-domain THz spectrometer

Joseph R. Demers, K.K. Wong and Bryon Kasper
EMCORE Corporation

SPIE Defense, Security and Sensing
Baltimore, Maryland
April 30, 2013
Outline

- Motivation
- Approach
- Results
- Future work
- Summary
Motivation

- **Develop a portable low-cost frequency-domain THz spectrometer**
 - Characterization of explosive and precursor materials in the field
 - Non-contact reflection modality

- **Investigate optical control of terahertz phase**
 - Mitigate the effect of interference fringes in data sets
 - Mitigate the effect of changing interference fringes in non-contact measurements

- **Design-for-cost approach**
 - Utilize telecom photonic packaging for low-cost and high reliability
 - COTS fiber-optic components and low-cost DSP-based electronics
 - Custom Lithium Niobate 850 nm optical phase modulator
Compact Spectrometer

- **Turn-key, high-performance system**
 - Two-piece design for maximum flexibility in wide range of applications

- **Fiber-coupled source/detector**
 - Transmission-mode system shown
 - Integrated detector pre-amp for low noise
 - Fully detachable for easy positioning

- **Laser / Processor unit**
 - Houses lasers and tuning/data collection electronics
 - Lithium Niobate phase modulator
 - Custom low-power DSP board
 - Weighs less than 4.5 kg (10 lbs)
Approach

- Coherent spectrometer configuration using GaAs-based lasers and photomixers
- Heterodyned semiconductor DFB lasers (783 or 855 nm)
- Tuning range of over 2 THz (~480 GHz/nm at 783 nm)
- THz beat note modulates conductance of source and detector photomixers
- Low-cost fiber-optic packaging and single-mode polarization-maintaining fiber
- Source photomixer bias modulated at 6 kHz enabling homodyne detection with lock-in amplifier
Spectrometer scan of lab air

- Interference pattern caused by coherent detection
- Smoothing eliminates fringe pattern, broad absorption features may be seen
- Smoothing reduces resolution and discards phase information and decreases resolution

Power (arb) vs. Frequency (GHz)

PB7200 - SN1001 - Test Date: July 28, 2011
Tuning: 200 GHz to 1500 GHz
SNR: > 70 dB-Hz @ 200 GHz
 > 50 dB-Hz @ 1 THz
 > 40 dB-Hz @ 1.5 THz
The problem with coherent detection

- Fringes negatively impact scanning speed and system performance
- Must completely resolve the fringes and therefore take high resolution scans when fringe spacing is short regardless of desired resolution
- Low resolution scans not possible without amplitude variation
Sample induces path-length changes

- Introduction of sample changes fringe spacing making background subtraction impossible

“Best case” path matching

Teflon sample-holder Inserted - unmatched

Graph showing frequency vs. power (arb units) with different markers indicating matched and unmatched conditions.
Optical phase control

- Use 1 x 2 lithium-niobate optical phase modulator to control relative optical phase prior to heterodyne combination
- Differential phase shift between the lasers on the source photomixer results in an equivalent terahertz phase shift
- Two techniques for fringe removal
 - Sequential phase shift
 - 2nd harmonic nulling
Lactose monohydrate: sequential

- A single scan of lactose monohydrate.
- Black trace is 0° phase offset while the red trace is 90° offset. Each data-point was taken sequentially switching between phases.
The summation of the 0° phase offset and the 90° offset results in the almost complete removal of the interference pattern.

No smoothing
Sequential 90 Degree Phase Shift Technique

- Summation of the 0 and 90 phase shifted power results in fringe-free power

- **Benefits:**
 - Removes interference pattern
 - Easy to implement with current system
 - Easy to determine bias corresponding to 90 degree
 - Take data point with modulator off, take data point with it on

- **Limitations:**
 - Not as effective with tight fringes
 - Still can’t effectively do the large step, low resolution scans
 - Scans take twice as long
Schematic for 2nd Harmonic Nulling

- Required revision to the electronics and custom DSP programming
- DC bias on the source PCS
- Triangle wave bias on the phase modulator
The Source of the 2nd Harmonic

- **Balanced condition results in no second harmonic**
- **Un-balanced condition results in second harmonic**

Balanced condition

Un-balanced condition
The first and second harmonics as a function of bias voltage on the optical phase modulator
Schematic for 2nd Harmonic Nulling
2nd Harmonic Nulling Results

- Plot 1st harmonic and 2nd harmonic
- Expected similar results as with sequential phase shifting
- Noise
Frequency Modulation

- Detach source PCS from optical input and connect to photodiode
- Multiple FM terms present – shouldn’t be there!
- Back reflections from photomixers + phase modulation = frequency modulated lasers
Summary/Future Work

Summary

- Successfully demonstrated sequential phase shifting as a method to remove the interference fringes
- First attempt and 2nd harmonic nulling resulted in frequency modulating the lasers

Future

- Improve optical isolation in the lasers and implement 2nd harmonic nulling
- Improve phase modulator insertion loss from 5 dB to less than 3 dB
- Transfer software from the computer to the DSP making system faster

Acknowledgements:
- NAVEODTECH, Indian Head MD
- For more information, visit EMCORE booth:
- Joseph R. Demers joe_demers@emcore.com
Issue with technique

- System changes frequency by temperature tuning lasers
- Integration happens during settling
- With current method greater frequency change occurs during un-shifted integration
- Likely an issue with large frequency steps

Exaggerated for illustration